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Abstract 

This paper presents analysis of the nonlinear interaction of a pair 
of solitary waves, the splitting of an isolated hump into a train of 
solitary waves, and the fission of a single solitary wave on 
reaching a shelf. Such interactions and splitting behaviour are 
usually described in the Korteweg–de Vries equation using the 
Hirota method, or more generally in terms of inverse scattering, a 
type of nonlinear Fourier transform theory. However, virtually 
identical results can be obtained using simple physical arguments 
based on a combination of mass, momentum and energy 
conservation, with linear scattering from the shelf edge for the 
shelf interaction. This approximate approach can also be applied 
to other hydrodynamic equations such as the regularised long 
wave or Peregrine equation for which inverse scattering methods 
are not possible. 

Introduction  

In the mid 19th century John Scott Russell first studied shallow 
water solitary waves experimentally and noted their persistence 
through nonlinear interactions. Both Boussinesq and Rayleigh 
demonstrated mathematically the existence of steady solitary 
waves on shallow water before Korteweg and de Vries published 
their famous PDE, which was actually first derived by 
Boussinesq. After this work the theory of solitary waves 
remained virtually untouched for 70 years until the mid 1960s 
when numerical studies by Zabusky and Kruskal [1] revealed the 
robust nature of soliton interactions, prompting an explosion of 
sophisticated mathematical analysis on nonlinear PDEs. The 
history of solitary waves has been reviewed by Miles [2], and 
that of water waves more generally by Darrigol [3]. 

The Korteweg–De Vries (KdV) equation describes uni-
directional propagation of waves on shallow water, where the 
horizontal lengthscale of the surface deformation 𝜂(𝑥, 𝑡)  is long 
compared to the undisturbed depth 𝑑. In dimensional form this 
equation is 
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There is a solitary wave solution  ηSol  moving at velocity c   
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So, solitary waves have a characteristic shape and propagate 
without change of form, with taller waves being narrower and 
moving faster. This raises the question of what happens when a 
faster one overtakes a slower one - a wave-wave interaction first 
discussed by Scott Russell in the mid 19th century. 

Scaling η, x and t, the non-dimensional KdV–equation becomes 

                            𝑢! + 1 + 𝑢 𝑢! + 𝑢!!! = 0  .               (3) 

This nonlinear PDE is built up of the following components:    
the linear telegraph equation 𝑢! + 𝑢! = 0 corresponds to very 
long linear waves, the extra triple derivative +𝑢!!! accounts for 
the dispersion due to  finite wavelength, and the +𝑢  𝑢! term 
includes the effect of nonlinearity. Viscous damping is neglected 
and wave breaking is assumed not to occur. 

Assuming we have localised wave disturbances decaying to zero 
far away, the 1st three conserved quantities of this equation 
correspond to global conservation of mass, momentum and 
energy 

𝐼1 = 𝑢  𝑑𝑥  ,!
!!   𝐼2 = 𝑢!  𝑑𝑥  , 𝐼3   = 𝑢! − 3𝑢!!  𝑑𝑥

!
!!

!
!!  

               (4) 

It is straightforward to prove that these conserved quantities are 
constants of the motion however complex the wave dynamics. 
Integrating over the whole spatial domain we can write 

𝑢!  𝑑𝑥   = − !
!"
(𝑢   + !

!𝑢
! + 𝑢!!)  𝑑𝑥

!
!!

!
!! = 0   . 

The wave motion is assumed to decay to zero far away so the 
RHS is zero. Shifting the time derivative outside the line integral 
for the LHS, we obtain 

!
!"

𝑢  𝑑𝑥  !
!! = 0       or         𝑢  𝑑𝑥  !

!! = 𝐼1 =  constant . 

The higher order conserved quantities can be derived from the 
PDE similarly. Remarkably the KdV and some other nonlinear 
evolution equations have an infinite number of such conserved 
quantities [4], though only the first few of these have a simple 
physical interpretation. In contrast, other apparently very similar 
equations, modelling the same physical systems to apparently the 
same level of approximation, only have a few. The regularised 
long wave (RLW) equation, also known as the Peregrine or BBM 
equation [5, 6], only has three conserved quantities [7]. 

Here we make use of three conserved quantities for the KdV 
equation, but this analysis could easily be repeated for 
approximate solutions to the RLW–equation or various versions 
of the Boussinesq equation.  

The nonlinear interaction of a pair of solitary waves 

One of the important observations of shallow water wave 
dynamics reported by Scott Russell in the mid-19th century was 
what happens when a larger solitary wave overtakes a smaller 
one, as shown in Figures 1 and 2. He described how the larger 
one catches up the smaller, then as they start to overlap, mass 
flows from the larger one behind to the small one ahead. This 
flux is sufficient to produce a complete exchange of identity, with 
the larger now ahead of the smaller, so they now separate. In the 
context of the KdV–equation, the analytic machinery to find 
exact solutions was only developed in 1968 by Miura et al. [4], 
and the bi-linear method for soliton interactions was developed 
slightly later by Hirota [8]. 



This interaction of a pair of solitary waves can be well 
approximated using conserved quantities. We assume that the 
maximally overlapped form shown in the centre of Figure 1 can 
be modelled by two waves of height A, inverse width B and the 
soliton Sech2-shape, these being separated by a distance L 

ηClose ≈ A Sech
2 B x[ ]+ A Sech2 B (x − L)[ ] .  

Clearly this assumed shape has 3 undetermined parameters, A, B 
and L. These can be found in terms of the heights of 2 interacting 
solitary waves a1 and a2 using the 3 conserved quantities I1-I3. 
For the two initially well separated solitary waves, we have 

I1~ a1
1/2 + a2

1/2, I2 ~ a1
3/2 + a2

3/2, I3 ~ a1
5/2 + a2

5/2 .  

For the assumed overlap shape, we have I1 ~ A/B and other more 
complicated but closed form expressions for I2 and I3 (not given 
here but obtained using Mathematica). With 3 equations in 3 
unknowns, the approximation for the maximally overlapped form 
can be obtained. The waves shown in Figure 1 are analytical 
solutions to the KdV–equation, but the approximated overlapped 
form cannot be distinguished from the exact solution on a plot, 
the largest error being typically <0.5% of the peak value. 

 

 

 

Figure 1. Spatial profiles of overtaking solitary waves, before (at left), at 
closest approach and after (at right), showing complete restoration of the 
ingoing waves but with the swap of order. 

 

Figure 2. A (x,t) contour plot for overtaking solitary waves in a frame of 
reference moving with the taller wave, showing the exchange of identity 
and the net forward shift in position for the taller wave and backward for 
the smaller wave. 

We note in passing that this simple model is only valid if the 
height of the smaller solitary wave is at least one quarter that of 
the larger, so a2 ≥ a1/4. The overlap length L is reduced to zero 
for a2 = a1/4 when perfect merging occurs. For a very small 2nd 
wave, with a2 <a1/4, the large wave simply runs over the smaller, 
although again linear superposition does not apply. 

As a generalisation of this analysis, the complete interaction for a 
pair of solitary waves, such as those shown in Figures 1 and 2, 
could be modelled with conserved quantities I1-I4 for the KdV–
equation, by generalising the overlapped form to have different 
amplitudes and widths in each peak, giving 4 dependent 

parameters. These 4 parameters could then be determined as 
functions of the separation width L as it is reduced from infinity 
to the minimum value. Such an analysis would yield a continuous 
approximation for the spatial structure at all times, not only at the 
instant of maximum overlap, though not the evolution in time 
itself as time would remain a hidden parameter.   

In contrast to this complete spatial model for a 2-solitary wave 
interaction in the KdV–equation, no such complete model would 
be possible for the RLW–equation, despite this equation being an 
equally valid reduction of the full water waves equations. This is 

                            𝑢! + 1 + 𝑢 𝑢! − 𝑢!!" = 0  .               (4) 

The only apparently minor difference is the replacement of a 
single spatial derivative in the dispersion term by one in time. 
With only 3 conserved quantities, as proved by Olver [7], only an 
approximation for the maximally overlapped form is possible. 
The RLW–equation does have solitary wave solutions. But, 
although numerical solutions to the RLW–equation remain 
remarkably similar to those for the KdV–equation over long 
distances and times, these solitary waves are not solitons, 
generally being very slightly modified by the so-called inelastic 
interactions [9]. 

 

Splitting of an isolated wave hump in the KdV–equation  
For the height of the smaller solitary wave being one quarter of 
that of the larger, so a2 = a1/4, Figure 3 shows perfect 
instantaneous merging of the two solitary waves, with the 
previously defined overlap distance L=0. The merged wave has a 
height of aMerge=3a1/4. We turn to a generalised version of this 
problem next. 

 
Figure 3. Spatial profiles of overtaking solitary waves, before (at left), at 
perfect merging and after splitting (at right), showing complete 
restoration of the ingoing waves but again with the swap of order. 

In non-dimensional form a KdV soliton of  height a is 

ηSol = a Sech
2 a

12 x − ct( )"
#$

%
&'
, c =1+3a . (5)

 

Assuming that n solitons can be combined into a single hump of 
height A and inverse width B written as 
  ηMerge = A Sech

2 B x[ ] ,  

the integrals for the conserved quantities can be easily found 
using Mathematica. For complete merger, these constants of the 
motion are 

I1= 4 3 a1
1/2 + a2

1/2 +...+ an
1/2( ) = 2A B ,

I2 = 8
3
a1
3/2 + a2

3/2 + ... + an
3/2( ) = 4A2 3B ,

I3= 8 3
5 a1

5/2 + a2
5/2 +...+ an

5/2( ) = 16
15 A

2 A−3B2( ) B .

 

The difficulty now comes in finding solutions to these equations, 
but a pattern soon emerges if we look for rational solutions. This 
implies that the an-type terms must be simple squares. 
 
We start with n=2 and the solitary wave amplitudes a1=1 and 
a2=1/4 as expected. Substituting and solving for A and B between 
I1 and I2 yields the height A=3/4 and the associated inverse width 
of the merged wave given by B2=1/48, the perfectly merged case 
shown in Figure 3. Substitution into I3 (and I4 and other higher 
conserved quantities) confirms this solution. 



For n=3, the solitary wave amplitudes are a1=1, a2=4/9  and 
a2=1/9, with the height A=2/3 and the associated inverse width of 
the merged wave given by B2=1/108. This 3 soliton case is close 
to the example of splitting on a shelf shown in Figure 5.  
 
For n=4, the solitary wave amplitudes are a1=1, a2=9/16,   
a3=4/16 and a4=1/16, with the height A=5/8 and the associated 
inverse width of B2=1/192. Again substitution into I3 confirms 
this solution. 
 
These results are simple to reproduce in numerical solutions of 
the KdV–equation using NDSOLVE in Mathematica. 
 
The pattern becomes clear: for any n, the soliton amplitudes and 
parameters of the merged hump are  

1, (n−1)2
n2
, (n−2)2

n2
, ...., 1

n2
"
#

$
% , A = n+1

2n , B2 = 1
12n2

 

The ratio A/(12B2) = A/a gives the height of the merged hump A 
compared to the height a of a solitary wave of the same width. 
Hence we obtain the general splitting rule: the number of solitary 
waves emerging from a single Sech2-hump is given by 
 

n(n+1) = 2A / a (6)  

Although this result is well-known and given in Mei [10], the 
simple ad-hoc derivation  given here in terms of conserved 
quantities is apparently new, though this might be better 
described as a demonstration as it relies on the identification of 
the wave pattern noted above. 

 

 
Solitary Wave Splitting on a Shelf  
Consider a solitary wave incident on a step change in water depth 
as shown below: 

 
Figure 4. A solitary wave of height 0.2m on water depth of 1m 
approaching a shelf on which the depth is halved. 
 

 
Figure 5. Evolution of a solitary wave up the step, as given in Orszaghova 
et al. [11] using a Boussinesq model. The single solitary wave splits into 
3 solitary waves on the shelf sorted by amplitude, and there is also some 
weak reflection. 
 
The interaction of a solitary wave with a shelf as computed by 
Orszaghova using an intermediate complexity Boussinesq model 
[11] is shown in Figure 5. Rather than continuing with numerical 
solutions, we now apply analysis based on conserved quantities 
and linear scattering to this problem. Consider a change in depth, 
h1 on the left to h2 on a shelf on the right (h1 > h2). A solitary 
wave approaches the shelf in the deeper region, so there will be 
partial transmission and then breakup into possibly several 
solitons on the shelf, and also reflection of a single much smaller 
pulse back into deeper water.  
 
The nonlinearity in the KdV and other shallow water equations 
acts slowly and cumulatively, so it is reasonable to treat the rapid 
interaction with the shelf edge as linear scattering (by analogy to 
impedance mismatching in transmission lines). Mei [10] gives 

the transmission (T) and reflection (R) coefficients for a long 
wave approaching a step change in depth as 
 

 
 

On either side of the step the wave speeds are approximately 
              c1 ≈ gh1 ,

 c2 ≈ gh2 ,
 

The height and length of the disturbance immediately on the shelf  
determine the number of solitons which then separate out. The 
timescale for a soliton of height a to pass a fixed location (in a 
linear approximation) is 
  t ~1 c 4h3 3a = 4h2 3ga . 

The time between the arrival of leading and trailing edges of the 
wave does not change as it moves across the shelf edge. So 
  4h1

2 (3gaI ) = 4h2
2 3gaT .    

Thus, a new height aT = a1(h2/h1)2 is required for the wave on 
the shelf to be a soliton. The ratio between the actual incident 
wave height immediately after transmission onto the step and the 
required height of a single solitary wave of the same duration on 
the new depth is then 
   

T a1
aT

=
2 h1 h2( )2

1+ h2 h1( )
1
2

> 1 .
       

This has essentially recovered the constant depth splitting 
problem. We now have a hump of water of amplitude T a1 on the 
shallower region, which is too tall to be a soliton aT matched to 
the new local depth. Making use of the condition for perfect 
splitting (6), now on the new reduced constant depth, each 
critical height ratio for perfect splitting into n solitons is given by 

 
n n+1( ) =

4 h1 h2( )2

1+ h2 h1( )
1
2
. (7)

  

And finding their heights and that of the reflected wave in terms 
of the incident solitary wave is straightforward.  
            
A second way of treating shelf scattering is to assume that the 
shelf slope is small, so Green's law is appropriate, see Mei [10]. 
The slope length is still assumed to be sufficiently compact that 
nonlinear dynamics on the slope itself are still negligible. Then 
Green's law gives the transmission coefficient T, with R=0, and 
the overall splitting criterion becomes 

 

Johnson used this second approach [12], giving numerical values 
for the critical depth ratios for n=2 & 3 (to 3 significant figures); 
see also the equivalent results of Tappert and Zabusky [13]. The 
calculated values from (7) and (8) are shown in the Table below. 

 
n  

Eqn (7) - sharp edge 

 
Eqn (8) - Green's law 

1 1 1 
2 0.6116 0.6137 
3 0.4470 0.4510 
4 0.3541 0.3594 
5 0.2940 0.3001 

Table: Critical depths for exactly n solitary waves on the shallow region  
 
Johnson then demonstrated the absence of any trailing 
oscillations at these critical depths using numerical solutions of a 
variable coefficient KdV–model, assuming a relatively slowly 
varying transition between the two depths and omitting any weak 
wave reflection.  
 
For small depth changes in the range 1>h2/h1>0.61, one large 
solitary wave is produced with a second much smaller one and 
some small oscillations. For intermediate depth changes with 

T = (h1 / h2 )
1/4 , n n+1( ) = 2 h1 h2( )9/4 . (8)

h2 h1 h2 h1

T = 2

1+ h2 h1( )
1
2

, R =
1− h2 h1( )

1
2

1+ h2 h1( )
1
2



0.61>h2/h1>0.45, two large solitary waves are produced with a 
much smaller third one and some very small trailing oscillations, 
and so on for larger depth changes. Only at the depth ratio values 
h2/h1=0.61 for n=2, h2/h1=0.45 for n=3 etc. are the appropriate 
number of large solitary waves produced with no small 
oscillations trailing behind.  
 
The number of solitary waves produced and the associated 
critical depths from the gentle slope model are very similar to 
those for the sharp edged shelf. However, with Green's Law 
which corresponds to overall conservation of energy into the 
transmitted wave alone, an important difference is that no wave 
reflection is predicted for a gentle slope. In contrast, there will be 
a weak reflected wave for the sharp-edged shelf. This is observed 
in both physical experiments [14] and the Boussinesq example 
shown in Figure 5 for h2/h1=0.5 for a relatively steep slope. 
 

Discussion - the educational value 

Much of what is taught in undergraduate engineering courses 
corresponds to linear theory - the response of systems to small 
perturbations. But beyond this, there is a whole new world of 
nonlinearity.  

It is striking to observe the reaction of students to a physical 
demonstration of a larger solitary wave catching a smaller and 
slower one in a long laboratory flume. Their prior expectations 
are always of simple linear superposition, with the occasional 
student suggesting that wave breaking might occur when the 
taller wave runs over the smaller one. Having done many such 
demonstrations to 2nd year students in Oxford for over a decade, 
I have never had anyone suggest beforehand what actually 
happens – the exchange of identity of the two waves. Having 
seen it once, students generally don't believe what they've just 
seen! Hence, repeats are required. 

Such a demonstration can be prefaced by an introduction to John 
Scott Russell, who first observed a solitary wave on the 
Ardrossan canal outside Edinburgh and then studied solitary 
waves in a flume constructed in his garden. Scott Russell is 
perhaps best know as the ship builder who constructed Brunel's 
ship the Great Eastern at Millwall on the banks of the Thames in 
East London. 

It is also perhaps of interest to students to stress the links between 
the mathematics of long waves on canals (the motivation of the 
original work by Korteweg and de Vries), the shape of extreme 
waves on the open ocean [15], and the gigabit transmission rates 
possible in optical fibres using solitons of light that they may 
some day use entirely unknowingly when web surfing [16].  

 

Conclusions 

A simple approach is presented for solitary wave interactions as 
modelled with the Korteweg–deVries equation. This makes use 
of the 3 global quantities that all realistic undamped dynamical 
systems must conserve: mass, momentum and energy.  

The analysis presented here can be applied to a range of 
nonlinear evolution equations modelling a variety of wave-wave 
interaction problems: here, solutions to the KdV–equation 
showing merging and splitting of humps on constant depth, and 
the splitting of solitary waves as the water depth is reduced. The 
results are mostly not new, but do show striking effects arising 
from nonlinearity in one of the simplest possible nonlinear wave 
equations. Hence, the behaviour of long waves on shallow water 
would seem ideal for demonstrating to engineering 
undergraduates that not everything they might study behaves in a 
linear manner. 
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